Abstract

The purpose of these experiments was to determine whether or not acetylcholine modulated the electrophysiological effects of isoproterenol on canine cardiac Purkinje fibers. Conventional microelectrode techniques were used. Predictably, isoproterenol produced shortening of action potential duration; acetylcholine significantly blunted this effect of isoproterenol. Isoproterenol restored excitability to fibers exposed to 22 mM potassium solutions, and acetylcholine abolished this isoproterenol-restored excitability. Both of these antagonistic effects of acetylcholine were blocked by atropine. Acetylcholine alone did not affect action potential duration in polarized fibers or excitability in potassium-depolarized fibers. Furthermore, acetylcholine had no effect on the decrease in action potential duration induced by premature electrical stimulation or by acetylstrophanthidin administration, or on excitability of fibers exposed to a zero sodium, high calcium superfusant. These data demonstrate a direct cellular basis for cholinergic antagonism of the electrophysiological effects of beta-adrenergic stimulation of canine cardiac specialized intraventricular conducting tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.