Abstract

Panax notoginseng saponins (PNS) are commonly used first-line drugs for treating cerebral thrombosis and stroke in China. However, the synchronized and targeted delivery of active ingredients in traditional Chinese medicine (TCM) poses a significant challenge for modern TCM formulations. Bovine serum albumin (BSA) was modified using 2-methacryloyloxyethyl phosphorylcholine (MPC), an analog of acetylcholine, and subsequently adsorbed the major PNS onto the modified albumin to produce MPC-BSA@PNS nanoparticles (NPs). This novel delivery system facilitated efficient and synchronized transport of PNS across the blood-brain barrier (BBB) through active transport mediated by nicotinic acetylcholine receptors. In vitro experiments demonstrated that the transport rates of R1, Rg1, Rb1, and Rd across the BBB were relatively synchronous in MPC-BSA@PNS NPs compared to those in the PNS solution. Additionally, animal experiments revealed that the brain-targeting efficiencies of R1 + Rg1 + Rb1 in MPC-BSA@PNS NPs were 2.02 and 7.73 times higher than those in BSA@PNS NPs and the free PNS group, respectively. This study presents a simple and feasible approach for achieving the targeted delivery of complex active ingredient clusters in TCM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call