Abstract

Karyopherin subunit alpha 2 (KPNA2, importin α1) is a nucleoplasmic protein responsible for the nuclear import of proteins with classical nuclear localization signals. Aberrant nuclear accumulation of KPNA2 has been observed in numerous cancer tissues. AMP-activated protein kinase (AMPK) is involved in the phosphorylation and acetylation of KPNA2 in enterocytes. However, the impact of these post-translational modifications on modulating the nucleocytoplasmic distribution of KPNA2 and its oncogenic role remain unclear. Unlike nuclear accumulation of wild-type KPNA2, which promoted lung cancer cell migration, KPNA2 Lys22 acetylation-mimicking mutations (K22Q and K22Q/S105A) prevented nuclear localization of KPNA2 and reduced the cell migration ability. Cytosolic KPNA2 K22Q interacted with and restricted the nuclear entry of E2F transcription factor 1 (E2F1), an oncogenic cargo protein of KPNA2, in lung cancer cells. Intriguingly, the AMPK activator EX229 promoted the nuclear export of KPNA2 S105A. However, the CBP/p300 inhibitor CCS-1477 abolished this phenomenon, suggesting that CBP/p300-mediated acetylation of KPNA2 promoted KPNA2 nuclear export in lung cancer cells. Collectively, our findings suggest that the CBP/p300 positively regulates KPNA2 acetylation, which enhances its cytosolic localization and suppresses its oncogenic activity in lung cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call