Abstract
Reversible lysine acetylation (RLA) of translation machinery components, such as ribosomal proteins (RPs) and translation factors (TFs), was identified in many microorganisms, while knowledge of its function and effect on translation remains limited. Herein, we show that translation machinery is regulated by acetylation. Using the cell-free translation system of E. coli, we found that AcP-driven acetylation significantly reduced the relative translation rate, and deacetylation partially restored the translation activity. Hyperacetylation caused by intracellular AcP accumulation or carbon/nitrogen fluctuation (carbon overflow or nitrogen limitation) modulated protein translation in vivo. These results uncovered a critical role of acetylation in translation regulation and indicated that carbon/nitrogen imbalance induced acetylation of ribosome in E. coli and dynamically affected translation rate via a global, uniform manner. KEY POINTS: • Acetylation of translation machinery directly regulated global translation. • K618 of EF-G, K411, and K464 of S1 are the key points influencing translation rate. • Carbon/nitrogen imbalance triggers AcP-dependent acetylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.