Abstract

Mapping different structural forms of serotonin subtypes 5-HT1A–5-HT7 using a selective-specific ligand with good pharmacokinetics and brain permeability can open avenues for personalized medication in depressed population. Herein, the selective 5-HT1A/7 antagonist, modified for enhanced brain permeation, is developed as a homobivalent ligand, (6-AcBTZ)2DTPA. After in-depth computational studies to probe the binding mechanism, two-step synthesis lead to (6-AcBTZ)2DTPA. Biocompatibility studies indicated cytocompatibility with 3.6–1.64% cell death (0.1 mM–1 pM) and hemocompatibility with 2.33% hemolysis of human erythrocytes. When 99mTc-radiolabeled in a quantitative yield (98%), a stable preparation was obtained with 7.4 and 3.5% dissociation upon incubation with human serum and excess cysteine. The single-photon-emission computed tomography (SPECT) tracer 99mTc-(6-AcBTZ)2DTPA showed biphasic clearance (t1/2, distribution = 0.5 min and t1/2, elimination = 482 min) and maximum brain uptake of 0.42 ± 0.02% ID/g with the regional localization (hippocampus: 11.38% ID/g; cortex: 26.42% ID/g; cerebellum: 25.23% ID/g). Thus, the 99mTc-metal-based SPECT neurotracer holds potential for neuroreceptor mapping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.