Abstract

Ketamine, a non-competitive antagonist of N-methyl-d-aspartate (NMDA) type glutamate receptors is commonly used as a pediatric anesthetic. Multiple studies have shown ketamine to be neurotoxic, particularly when administered during the brain growth spurt. Previously, we have shown that ketamine is detrimental to motor neuron development in the zebrafish embryos. Here, using both wild type (WT) and transgenic (hb9:GFP) zebrafish embryos, we demonstrate that ketamine is neurotoxic to both motor and sensory neurons. Drug absorption studies showed that in the WT embryos, ketamine accumulation was approximately 0.4% of the original dose added to the exposure medium. The transgenic embryos express green fluorescent protein (GFP) localized in the motor neurons making them ideal for evaluating motor neuron development and toxicities in vivo. The hb9:GFP zebrafish embryos (28h post fertilization) treated with 2mM ketamine for 20h demonstrated significant reductions in spinal motor neuron numbers, while co-treatment with acetyl l-carnitine proved to be neuroprotective. In whole mount immunohistochemical studies using WT embryos, a similar effect was observed for the primary sensory neurons. In the ketamine-treated WT embryos, the number of primary sensory Rohon-Beard (RB) neurons was significantly reduced compared to that in controls. However, acetyl l-carnitine co-treatment prevented ketamine-induced adverse effects on the RB neurons. These results suggest that acetyl l-carnitine protects both motor and sensory neurons from ketamine-induced neurotoxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.