Abstract

The aging heart displays a loss of bioenergetic reserve capacity partially mediated through lower fatty acid utilization. We investigated whether the age-related impairment of cardiac fatty acid catabolism occurs, at least partially, through diminished levels of l-carnitine, which would adversely affect carnitine palmitoyltransferase 1 (CPT1), the rate-limiting enzyme for fatty acyl-CoA uptake into mitochondria for β-oxidation. Old (24–28 mos) Fischer 344 rats were fed±acetyl-l-carnitine (ALCAR; 1.5% [w/v]) for up to four weeks prior to sacrifice and isolation of cardiac interfibrillar (IFM) and subsarcolemmal (SSM) mitochondria. IFM displayed a 28% (p<0.05) age-related loss of CPT1 activity, which correlated with a decline (41%, p<0.05) in palmitoyl-CoA-driven state 3 respiration. Interestingly, SSM had preserved enzyme function and efficiently utilized palmitate. Analysis of IFM CPT1 kinetics showed both diminished Vmax and Km (60% and 49% respectively, p<0.05) when palmitoyl-CoA was the substrate. However, no age-related changes in enzyme kinetics were evident with respect to l-carnitine. ALCAR supplementation restored CPT1 activity in heart IFM, but not apparently through remediation of l-carnitine levels. Rather, ALCAR influenced enzyme activity over time, potentially by modulating conditions in the aging heart that ultimately affect palmitoyl-CoA binding and CPT1 kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.