Abstract

Acetyl-L-carnitine (ALC) has gained clinical interest for its analgesic effect in different forms of neuropathies associated with chronic pain, such as diabetic and HIV-related peripheral neuropathies. The antinociceptive effect of ALC has been confirmed in several experimental models of neuropathic pain, including streptozotocin- and chemotherapy-induced neuropathy, and the sciatic nerve chronic constriction injury model. In these models, prophylactic administration of ALC has proven to be effective in preventing the development of neuropathic pain. In addition, ALC is known to produce a strong antinociceptive effect when given after neuropathic pain has been established. ALC can also improve the function of peripheral nerves by increasing nerve conduction velocity, reducing sensory neuronal loss, and promoting nerve regeneration. Analgesia requires repeated administrations of ALC, suggesting that the drug regulates neuroplasticity across the pain neuraxis. Recent evidence indicates that ALC regulates processes that go beyond its classical role in energy metabolism. These processes involve the activation of muscarinic cholinergic receptors in the forebrain, and an increased expression of type-2 metabotropic glutamate (mGlu2) receptors in dorsal root ganglia neurons. Induction of mGlu2 receptors is mediated by acetylation mechanisms that involve transcription factors of the nuclear factor (NF)-kappaB family.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.