Abstract

The level of acetyl-coenzyme-A carboxylase activity in Candida lipolytica undergoes large variations depending upon the carbon source on which the yeast is grown. Cells grown on n-alkanes or fatty acids exhibit a lower activity level than do cells grown on glucose. Among the n-alkanes and fatty acids tested, n-heptadecane, n-octadecane, oleic acid and linoleic acid reduce the enzyme activity to the lowest levels, which are 16-18% of the activity level in glucose-grown cells. Immunochemical titrations and Ouchterlony double-diffusion analysis with specific antibody as well as kinetic studies have indicated that the observed decrease in the level of acetyl-CoA carboxylase activity is due to a reduction in the cellular content of the enzyme. Furthermore, isotopic leucine incorporation studies with the use of the immunoprecipitation technique have demonstrated that the relative rate of synthesis of the enzyme in oleic-acid-grown cells is diminished to 12% of that in glucose-grown cells. Evidence has also been obtained to support the view that the enzyme in this yeast is not degraded at a rate high enough to contribute to the marked decrease in the cellular content of the enzyme. Thus, it is concluded that the reduction in acetyl-CoA carboxylase content in fatty-acid-grown cells is due to diminished synthesis of the enzyme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call