Abstract

Saccharopolyspora erythraea has three AMP-forming acetyl-CoA synthetases (Acs) encoded by acsA1, acsA2, and acsA3. In this work, we found that nitrogen response regulator GlnR can directly interact with the promoter regions of all three genes and can activate their transcription in response to nitrogen availability. The typical GlnR-binding boxes were identified in the promoter regions. Moreover, the activities of three Acs enzymes were modulated by the reversible lysine acetylation (RLA) with acetyltransferase AcuA and NAD+ -dependent deacetylase SrtN. Interestingly, GlnR controlled the RLA by directly activating the expression of acuA and srtN. A glnR-deleted mutant (ΔglnR) caused a growth defect in 10 mM acetate minimal medium, a condition under which RLA function is critical to control Acs activity. Overexpression of acuA reversed the growth defect of ΔglnR mutant. Total activity of Acs in cell-free extracts from ΔglnR strain had a 4-fold increase relative to that of wildtype strain. Western Blotting showed that in vivo acetylation levels of Acs were influenced by nitrogen availability and lack of glnR. These results demonstrated that GlnR regulated acetyl-CoA synthetases at transcriptional and post-translational levels, and mediated the interplay between nitrogen and carbon metabolisms by integrating nitrogen signals to modulate the acetate metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.