Abstract

Boswellia is a traditional medicine for bruises and injuries. Its main active ingredient, acetyl-11-keto-beta-boswellic acid, has antioxidant and antiapoptotic effects. In this experiment, we used Sprague-Dawley rats to make a sciatic nerve injury model to detect the transcription factor NF-E2-related factor 2/heme oxygenase 1 signaling pathway and apoptosis, combined with clinical indicators, for testing whether acetyl-11-keto-beta-boswellic acid can reduce oxidative stress and promote sciatic nerve repair. Our results showed that acetyl-11-keto-beta-boswellic acid administration promoted myelin regeneration and functional recovery in the rat sciatic nerve, reduced lipid peroxidation levels, upregulated the expression of various antioxidant enzymes and enhanced enzyme activity, decreased the expression levels of apoptosis-related proteins, and promoted nuclear translocation of the transcription factor NF-E2-related factor 2 protein. In vitro studies revealed that acetyl-11-keto-beta-boswellic acid reduced H2O2-induced reactive oxygen species production, restored mitochondrial membrane potential, upregulated the expression of various antioxidant enzymes, and downregulated apoptosis-related indicators in Schwann cells, and these therapeutic effects of acetyl-11-keto-beta-boswellic acid were reversed after ML385 treatment in Schwann cells. In summary, acetyl-11-keto-beta-boswellic acid alleviates oxidative stress and apoptosis caused by sciatic nerve injury in rats by activating the transcription factor NF-E2-related factor 2/heme oxygenase 1 signaling pathway, promotes the recovery of sciatic nerve function in rats, and is a promising therapeutic agent to promote sciatic nerve repair by alleviating excessive oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call