Abstract

TiO₂ has been studied most commonly because it has high stability, non-toxicity, high catalytic activity, and highly conductivity. Many studies have shown that TiO₂ would generate electron-hole pairs illuminated with UV and surround more energy than that before being illuminated. However, the surface area of TiO₂ is not large enough and the adsorption capacity is small. In this study, the titanium nano tube (TNT) catalysts were prepared to increase the surface area and adsorption capacity. The Fe-TNT was also prepared from slag iron since many slag iron cause waste treatment problems. In this study, the effect of Fe loading, including 0.77%, 1.13%, 2.24% and 4.50%, on acetone removal was also assessed since TNT doped with transitional or precious metals can be used to improve catalytic reaction efficiency. Furthermore, four kinds of VOCs concentration, including 250, 500, 1000 and 1500 ppm were tested. Four kinds of retention time, including 0.4, 0.8, 4.0 and 6.0 sec, and four kinds of dosage, including 0.15, 0.25, 0.30 and 0.45 g cm⁻³, were also assessed. In this study, the adsorption capacity of Fe-TNT was 18.8, 23.3, 28.9 and 32.6 mg g⁻¹ for acetone of 250, 500, 1000 and 1500 ppm, respectively. Four kinds of temperature, including 150, 200, 250 and 300 °C were tested in catalytic reaction system. The results showed removal efficiency increased with increasing temperature. The efficiency can be reached 95% under the conditions with the dosage higher than 0.3 g cm⁻³, temperature higher than 270 °C and retention time higher than 270 °C. Reaction efficiency was 20, 31, 41 and 96% at the temperature of 150, 200, 250 and 300 °C, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call