Abstract

Acetone undergoes aldol condensation and cyclization reactions on TiO2 to form mesitylene (1,3,5-trimethylbenzene) below 400 K. The reaction rate is slow on pure anatase TiO2, but on Degussa P25, a mixture of anatase and rutile, more than 20% of a monolayer of acetone forms mesitylene during temperature-programmed desorption or hydrogenation. Other C5–C9 hydrocarbon products also form on both oxidized and reduced TiO2, whereas hexene forms only on reduced TiO2. Acetaldehyde undergoes aldol condensation on both types of TiO2; acetaldehyde either desorbs or forms dimeric condensation products on anatase. However, on Degussa P25 TiO2, trimeric condensation products, higher molecular weight compounds, and coke also form. In addition, C5H8, C5H10, C6H10, and C9H14 form as secondary reaction products of aldol condensation. Surface concentrations of acetaldehyde and acetone are higher on Degussa P25 than on anatase TiO2. Degussa P25 has more sites that catalyze aldolization, and it has more acid sites. These condensation reactions, which take place at relatively low temperature, may be partly responsible for deactivation of Degussa P25 during photocatalytic oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.