Abstract

Plants live in close association with large communities of microbes, some of which are foliar pathogens that invade tissues, primarily via stomata on the leaf surface. Stomata are considered part of an integral, innate immunity system capable of efficiently preventing pathogens from entering the host plant. Although Bacillus, a typical plant growth-promoting rhizobacterium, is known to induce stomatal closure, the substances participating in this closure and the mechanism involved in its regulation remain poorly understood. Here, we screened a mutant library and conducted site-specific mutagenesis experiments in order to identify such substances. We found that acetoin and 2,3-butanediol from B. amyloliquefaciens FZB42 induced stomatal closure in Arabidopsis thaliana and Nicotiana benthamiana. These two components could function either via root absorption or volatilization to restrict stomatal apertures, but root absorption was more efficient. Both substances invoked the salicylic acid and abscisic acid signaling pathways to close the stomata and stimulated accumulation of hydrogen peroxide and nitric oxide. The results present comprehensive evidence of how soil rhizobacteria may affect plant stomata, in a way that reinforces the evolved mutualism between the two groups of organisms, and provide potential alternative avenues of research towards reducing the incidence of disease in crops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.