Abstract

White biotechnology is promising to transform CO2 emissions into a valuable commodity chemical such as the biopolymer polyhydroxyalkanaotes (PHA). Our calculations indicated that the indirect conversion of acetic acid from CO2 into PHA is an interesting alternative for the direct production of PHA from CO2 in terms of CO2 fixation, H2 consumption, substrate cost, safety and process performance. An alternative cultivation method using acetic acid as an indirect sink of CO2 was therefore developed and a proof-of-concept provided for the synthesis of both the homopolymer poly(3-hydroxybutyrate) (PHB) and the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The aim was to compare key performance parameters with those of existing cultivation methods for direct conversion of CO2 to PHA. Fed-batch cultivations for PHA production were performed using a pH-stat fed-batch feeding strategy in combination with an additional Dissolved Oxygen (DO)-dependent feed. After 118 h of fermentation, 60 g/L cell dry matter (CDM) containing 72% of PHB was obtained, which are the highest result values reported so far. Fed-batch cultivations for PHBV production resulted in 65 g/L CDM and 48 g/L PHBV concentration with a 3HV fraction of 27 mol %. Further research should be oriented towards process optimisation, whole process integration and design, and techno-economic assessment.

Highlights

  • The 2030 framework for climate and energy policies contains a binding target to cut emissions in EU territory by at least 40% with respect to 1990 levels by 2030 [1]

  • Acetic acid exhibits a toxic effect on cell growth when present above 3 g/L

  • PHB production by C. necator from acetic acid resulted in the highest PHB concentration reported so far

Read more

Summary

Introduction

The 2030 framework for climate and energy policies contains a binding target to cut emissions in EU territory by at least 40% with respect to 1990 levels by 2030 [1]. This target enables the EU to take cost-effective steps towards its long-term objective of cutting emissions by 80–95% by 2050, and contributes to the Paris Agreement. As theoretical limits of efficiency are being reached and process-related emissions are unavoidable in some sectors, the utilisation of CO2 for the production of fuels, chemicals and materials, referred to as Carbon Capture and Utilization (CCU), has emerged as a promising CO2 mitigation tool.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call