Abstract
Acetate is a short-chain fatty acid (SFA) that is the major substrate for de novo fatty acid synthesis. The mammalian target of rapamycin/eukaryotic initiation factor 4E (mTOR/eIF4E) signaling pathway is involved in fat synthesis. However, the effect and mechanism of acetate on fatty acid synthesis by the mTOR/eIF4E signaling pathway is unclear in bovine mammary epithelial cells (BMECs). The objectives of this study were to investigate the effect of acetate on cell viability, triacylglycerol (TG), and mRNA expression of the genes related to lipid synthesis. The mechanism of acetate regulation milk fat synthesis through the mTOR/eIF4E signaling pathway was assessed by blocking the mTOR signaling pathway and silencing eIF4E in BMECs. Third-passage BMECs were allocated to 6 treatments including 0, 4, 6, 8, 10, and 12 mM acetate to evaluate the effect of acetate on lipid synthesis; the optimum concentration in the first study was selected for the subsequent study. Subsequently, cells were randomly allocated to 4 treatments, 1 control group and 3 treated groups, consisting of acetate (6 mM), rapamycin (100 nM), and acetate + rapamycin to test the role of mTOR signaling pathway response to acetate in milk lipid synthesis. Finally, eIF4E was silenced by small interfering RNA (siRNA) to detect the role of eIF4E in milk lipid synthesis. Treatments included control, eIF4E siRNA, acetate (6 mM), and acetate+ eIF4E siRNA. Results showed that acetate increased TG accumulation and the relative expression of fatty acid synthase (FASN), acetyl-coenzyme A carboxylase α (ACACA), fatty acid-binding protein 3 (FABP3), sterol regulatory element binding protein 1 (SREBP1), peroxisome proliferator-activated receptor gamma (PPARG), mTOR, eIF4E, P70 ribosomal protein S6 kinase-1 (S6K1), and 4E-binding protein-1 (4EBP1) in a dose-dependent manner. Rapamycin effectively inhibited the positive effect of acetate on the relative expression of mTOR, eIF4E, S6K1, 4EBP1, FASN, ACACA, FABP3, stearoyl-CoA desaturase (SCD1), SREBP1, and PPARG. The upregulation of acetate on the relative expressions of FASN, ACACA, SCD1, and SREBP1 was suppressed when eIF4E was knocked down. It suggested that acetate regulated milk fat synthesis through mTOR/eIF4E signaling pathway in BMECs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.