Abstract

The effect of the addition of hydrogen-consuming microorganisms on the metabolism of Clostridium thermolacticum was studied. By growing this bacterium in continuous culture at 58 °C, on 29 mmol lactose l −1 (10 g l −1) in the feed, with the H 2-consuming microorganisms Methanothermobacter thermoautotrophicus and Moorella thermoautotrophica, the volumetric productivity of acetate was increased up to 3.9 mmol l −1 h −1 at a dilution rate of 0.058 h −1. This was about three times higher than the maximal acetate volumetric productivity quantified when C. thermolacticum was cultivated alone. In the consortium, C. thermolacticum was the only species able to metabolize lactose; it produced not only acetate, but also hydrogen, carbon dioxide and lactate. The other species of the consortium were growing on these by-products. Meth. thermoautotrophicus played an important role as a very efficient hydrogen scavenger and decreased the hydrogen partial pressure drastically: hydrogen was converted to methane. Moor. thermoautotrophica converted lactate as well as hydrogen and carbon dioxide into acetate. As a consequence, lactose was efficiently consumed and the only organic product in the liquid phase was acetate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call