Abstract

Acetaminophen (APAP) is extensively used as an analgesic and antipyretic drug. APAP is partly metabolized to N-acetyl-p-benzoquinone imine, a reactive metabolite, by cytochrome P450 (CYP) 1A2, 2E1 and 3A4. Some reports have indicated that CYP3A protein production and its metabolic activity are induced by APAP in rats in vivo. The CYP3A subfamily is believed to be transcriptionally regulated by chemical compounds. However, the mechanism underlying these responses is not completely understood. To clarify these mechanisms, we assessed the effects of APAP on CYP3A1/23 protein levels according to mRNA synthesis and protein degradation in rat hepatocyte spheroids, a model of liver tissue, in vivo. APAP induced CYP3A1/23 protein levels and metabolic activity. However, no change in CYP3A1/23 mRNA levels was observed. Moreover, APAP prolonged the half-life of CYP3A1/23 protein. CYP3A is known to be degraded via the ubiquitin-proteasome system. APAP significantly was found to decrease levels of polyubiquitinated CYP3A1/23 and glycoprotein 78, an E3 ligase of CYP3A1/23. These findings demonstrate that APAP induces accumulation of functional CYP3A protein via inhibition of protein degradation. Our findings may lead to the determination of novel drug–drug interactions with APAP.

Highlights

  • The cytochrome P450 (CYP) family comprises the major enzymes for drug and endogenous metabolism

  • We evaluated CYP3A1/23 protein levels in hepatocyte spheroids at day 5

  • We examined the effects of APAP on the degradation of CYP3A1/23 protein levels in rat hepatocyte spheroids

Read more

Summary

Introduction

The cytochrome P450 (CYP) family comprises the major enzymes for drug and endogenous metabolism. We identified Ub-dependent proteasomal degradation dysfunction as the predominant mechanism underlying the induction of CYP3A1/23 protein levels and metabolic activity in response to APAP exposure in a rat hepatocyte spheroids culture model. Results CYP3A1/23 protein levels in hepatocyte spheroids during culture.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call