Abstract

Acetaldehyde, the first metabolite of ethanol, has been suggested to be involved in many behavioral effects of ethanol. However, few studies have investigated the hypothermic effects of acetaldehyde or the contribution of acetaldehyde to ethanol-induced hypothermia. The aim of the present study is to better understand the hypothermic effects of acetaldehyde and the possible contribution of acetaldehyde in ethanol-induced hypothermia, especially under conditions leading to acetaldehyde accumulation. Female Swiss mice were injected intraperitoneally with ethanol and acetaldehyde and their rectal temperatures were measured with a digital thermometer at various time points after the injections. Experiment 1 compared the hypothermic effects of various acetaldehyde doses (0 to 300 mg/kg) with a reference dose of ethanol (3 g/kg). Experiment 2 tested the effects of a pretreatment with the aldehyde dehydrogenase (ALDH) inhibitor cyanamide (25 mg/kg) on ethanol- and acetaldehyde-induced hypothermia. In experiments 3 and 4, mice received a combined pretreatment with cyanamide and the alcohol dehydrogenase (ADH) inhibitor 4-Methylpyrazole (10 mg/kg) before the injection of ethanol or acetaldehyde. Acetaldehyde at doses between 100 and 300 mg/kg induced significant hypothermic effects, but of shorter duration than ethanol-induced hypothermia. The inhibition of ALDH enzymes by cyanamide induced a strong potentiation of both ethanol- and acetaldehyde-induced hypothermia. The pretreatment with 4-MP prevented the potentiation of ethanol-induced hypothermia by cyanamide, but slightly increased the potentiation of acetaldehyde-induced hypothermia by cyanamide. The results of the present study clearly show that acetaldehyde has hypothermic properties in mice at least at relatively high concentrations. Furthermore, the accumulation of acetaldehyde following ALDH inhibition strongly enhanced the hypothermic effects of ethanol. These latter results confirm the hypothermic properties of acetaldehyde and show that acetate, the next step in ethanol metabolism, is not involved in these hypothermic effects. Finally, the experiment with 4-MP indicates that the potentiating effects of cyanamide are mediated by the peripheral accumulation of acetaldehyde, which then reaches the brain to induce a severe hypothermia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.