Abstract

α-Acetal, ω-alkyne poly(ethylene oxide) was synthesized as building block of glycoconjugated poly(ε-caprolactone)-graft-poly(ethylene oxide) (PCL-g-PEO) copolymers. The alkyne group is indeed instrumental for the PEGylation of a poly(α-azido-ε-caprolactone-co-ε-caprolactone) copolymer by the Huisgen's 1,3 dipolar cycloaddition, i.e., a click reaction. Moreover, deprotection of the acetal end-group of the hydrophilic PEO grafts followed by reductive amination of the accordingly formed aldehyde with an aminated sugar is a valuable strategy of glycoconjugation of the graft copolymer, whose micelles are then potential. A model molecule (fluoresceinamine) was first considered in order to optimize the experimental conditions for the reductive amination. These conditions were then extended to the decoration of the graft copolymer micelles with mannose, which is a targeting agent of dendritic cells and macrophages. The bioavailability of the sugar units at the surface of micelles was investigated by surface plasmon resonance (SPR). The same question was addressed to nanoparticles stabilized by the graft copolymer. Enzyme linked lectin assay (ELLA) confirmed the availability of mannose at the nanoparticle surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.