Abstract

Environmental variations in patient-dependent and surgical factors were modeled using robust optimization with a finite element acetabular cup-pelvis model. A previously developed statistical optimization scheme was used to: (1) determine the cup geometry and the optimal cup-bone interference that maximized bone-implant contact areas and minimized changes in the gap volume between the implant and bone surface during gait loading and unloading; and (2) determine the relative contributions of design, patient-dependent, and surgical factors to variations in bone-implant contact areas and a change in gap volume. The statistical analyses indicated that the design variables, namely the equatorial diameter and eccentricity, explained most of the variations in the performance measures. Further, the hemispherical designs performed better than the nonhemispherical designs. The 58 mm hemispherical cup, with 2 mm diametral interferences, minimized the change in gap volume and attained 82% and 81% of the maximum predicted total and rim contact areas, respectively. The equatorial diameter and eccentricity, not the patient-dependent and surgical factors, explained most of the variations in the performance measures. Perfect surface apposition was not attained with any of the cup designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.