Abstract

The repurposing of already-approved drugs has emerged as an alternative strategy to rapidly identify effective, safe, and conveniently available new therapeutic indications against human diseases. The current study aimed to assess the repurposing of the anticoagulant drug acenocoumarol for the treatment of chronic inflammatory diseases (e.g., atopic dermatitis and psoriasis) and investigate the potential underlying mechanisms. For this purpose, we used murine macrophage RAW 264.7 as a model in experiments aimed at investigating the anti-inflammatory effects of acenocoumarol in inhibiting the production of pro-inflammatory mediators and cytokines. We demonstrate that acenocoumarol significantly decreases nitric oxide (NO), prostaglandin (PG)E2, tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β levels in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Acenocoumarol also inhibits the expression of NO synthase (iNOS) and cyclooxygenase (COX)-2, potentially explaining the acenocoumarol-induced decrease in NO and PGE2 production. In addition, acenocoumarol inhibits the phosphorylation of mitogen-activated protein kinases (MAPKs), c-Jun N terminal kinase (JNK), p38 MAPK, and extracellular signal-regulated kinase (ERK), in addition to decreasing the subsequent nuclear translocation of nuclear factor κB (NF-κB). This indicates that acenocoumarol attenuates the macrophage secretion of TNF-α, IL-6, IL-1β, and NO, inducing iNOS and COX-2 expression via the inhibition of the NF-κB and MAPK signaling pathways. In conclusion, our results demonstrate that acenocoumarol can effectively attenuate the activation of macrophages, suggesting that acenocoumarol is a potential candidate for drug repurposing as an anti-inflammatory agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call