Abstract

Trauma to the digits often leaves soft tissue defects with exposed bone, joint, and/or tendon that require soft tissue replacement. The objective of this study was to evaluate the effectiveness of acellular dermal regeneration template combined with full-thickness skin grafting for soft tissue reconstruction in digital injuries with soft tissue defects. Acellular dermal regeneration template was used to reconstruct digital injuries with exposed bone, joint, tendon, and/or hardware not amenable to treatment with healing by secondary intention, rotation flaps, or primary skin grafts. Acellular dermal regeneration template was applied to 21 digits in 17 patients. Nineteen digits had exposed bone, 8 digits had exposed tendon, 6 digits had exposed joints, and 2 digits had exposed hardware. The acellular dermal regeneration template was sutured over the soft tissue defect. Over 3 weeks, a neodermis formed. The superficial silicone layer of the acellular dermal regeneration template was removed, and the digits received full-thickness epidermal autografting with cotton bolster. The duration of postoperative follow-up extended to a minimum of 12 months. For the injury sites where acellular dermal regeneration template was applied, the total area of application ranged from 1 cm(2) to 24 cm(2), with the largest individual site measuring 12 cm(2). Twenty of 21 digits demonstrated 100% incorporation of the acellular dermal regeneration template skin substitute. One digit that had sustained multilevel trauma developed necrosis requiring revision amputation. Full-thickness epidermal autografting was performed an average of 24 days after acellular dermal regeneration template skin substitute application and demonstrated a 100% take in 16 of 20 digits and partial graft loss of 15% to 25% in 4 of 20 digits that did not require further treatment. Acellular dermal regeneration template combined with secondary full-thickness skin grafting is an effective method of skin reconstruction in complex digital injuries with soft tissue defects involving exposed bone, tendon, and joint. The neodermis increases tissue bulk and facilitates epidermal autografting with digital injuries that otherwise would require flap coverage or skeletal shortening of the digit. Therapeutic IV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.