Abstract

Casein was hydrolyzed by alcalase to a degree of hydrolysis of 10.9% to obtain a hydrolysate having ACE-inhibition in vitro with an IC50 value of 52.6 μg/mL. The prepared hydrolysate was modified by alcalase-catalyzed plastein reaction with extrinsic proline added at 0.4 mol/mol free amino groups (on the basis of the hydrolysate), and fractionated by ethanol- or methanol-water solvents in proportions of 3:7, 5:5, or 7:3 (v/v), respectively. With the decrease of free amino groups of the modified hydrolysate as the response, the optimized plastein reaction conditions were alcalase addition of 3.1 kU/g peptides, substrate concentration of 50% (w/v), and reaction temperature of 25°C. Four modified hydrolysates prepared with different reaction times exhibited higher ACE-inhibitory activities than the original hydrolysate. The evaluation results showed that solvent fractionation of the modified hydrolysate with the maximum activity (IC50 = 13.0 μg/mL) yielded the separated soluble fraction's higher activity but the precipitate fraction's lower one. Further enzymatic digestion of the modified hydrolysate with the maximum activity and its two fractionated products by four proteases in vitro caused damage to the activities, but the residual activities of the final digests were higher than that of the original hydrolysate, indicating that the plastein reaction could confer casein hydrolysate protease resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call