Abstract
Enzymes are crucial in numerous biological processes, with the Enzyme Commission (EC) number being a commonly used method for defining enzyme function. However, current EC number prediction technologies have not fully recognized the importance of enzyme active sites and structural characteristics. Here, we propose GraphEC, a geometric graph learning-based EC number predictor using the ESMFold-predicted structures and a pre-trained protein language model. Specifically, we first construct a model to predict the enzyme active sites, which is utilized to predict the EC number. The prediction is further improved through a label diffusion algorithm by incorporating homology information. In parallel, the optimum pH of enzymes is predicted to reflect the enzyme-catalyzed reactions. Experiments demonstrate the superior performance of our model in predicting active sites, EC numbers, and optimum pH compared to other state-of-the-art methods. Additional analysis reveals that GraphEC is capable of extracting functional information from protein structures, emphasizing the effectiveness of geometric graph learning. This technology can be used to identify unannotated enzyme functions, as well as to predict their active sites and optimum pH, with the potential to advance research in synthetic biology, genomics, and other fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.