Abstract

Hemagglutinin (HA) is responsible for facilitating viral entry and infection by promoting the fusion between the host membrane and the virus. Given its significance in the process of influenza virus infestation, HA has garnered attention as a target for influenza drug and vaccine development. Thus, accurately identifying HA is crucial for the development of targeted vaccine drugs. However, the identification of HA using in-silico methods is still lacking. This study aims to design a computational model to identify HA. In this study, a benchmark dataset comprising 106 HA and 106 non-HA sequences were obtained from UniProt. Various sequence-based features were used to formulate samples. By perform feature optimization and inputting them four kinds of machine learning methods, we constructed an integrated classifier model using the stacking algorithm. The model achieved an accuracy of 95.85% and with an area under the receiver operating characteristic (ROC) curve of 0.9863 in the 5-fold cross-validation. In the independent test, the model exhibited an accuracy of 93.18% and with an area under the ROC curve of 0.9793. The code can be found from https://github.com/Zouxidan/HA_predict.git. The proposed model has excellent prediction performance. The model will provide convenience for biochemical scholars for the study of HA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.