Abstract
We consider the extreme value statistics of N independent and identically distributed random variables, which is a classic problem in probability theory. When N → ∞, fluctuations around the maximum of the variables are described by the Fisher–Tippett–Gnedenko theorem, which states that the distribution of maxima converges to one out of three limiting forms. Among these is the Gumbel distribution, for which the convergence rate with N is of a logarithmic nature. Here, we present a theory that allows one to use the Gumbel limit to accurately approximate the exact extreme value distribution. We do so by representing the scale and width parameters as power series, and by a transformation of the underlying distribution. We consider functional corrections to the Gumbel limit as well, showing they are obtainable via Taylor expansion. Our method also improves the description of large deviations from the mean extreme value. Additionally, it helps to characterize the extreme value statistics when the underlying distribution is unknown, for example when fitting experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.