Abstract
We describe an active contour framework with accurate shape and size constraints on the vessel cross-sectional planes to produce the vessel segmentation. It starts with a multiscale vessel axis tracing in a 3D computed tomography (CT) data, followed by vessel boundary delineation on the cross-sectional planes derived from the extracted axis. The vessel boundary surface is deformed under constrained movements on the cross sections and is voxelized to produce the final vascular segmentation. The novelty of this paper lies in the accurate contour point detection of thin vessels based on the CT scanning model, in the efficient implementation of missing contour points in the problematic regions and in the active contour model with accurate shape and size constraints. The main advantage of our framework is that it avoids disconnected and incomplete segmentation of the vessels in the problematic regions that contain touching vessels (vessels in close proximity to each other), diseased portions (pathologic structure attached to a vessel), and thin vessels. It is particularly suitable for accurate segmentation of thin and low contrast vessels. Our method is evaluated and demonstrated on CT data sets from our partner site, and its results are compared with three related methods. Our method is also tested on two publicly available databases and its results are compared with the recently published method. The applicability of the proposed method to some challenging clinical problems, the segmentation of the vessels in the problematic regions, is demonstrated with good results on both quantitative and qualitative experimentations; our segmentation algorithm can delineate vessel boundaries that have level of variability similar to those obtained manually.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.