Abstract

Abstract The continuous wave shows greater potential than the pulse signal to achieve high-accuracy ultrasound speed measurement thanks to its stronger noise resistance. However, the accuracy of ultrasound speed measurement would deteriorate if echoes exist in the received continuous wave. This paper presents an applicable method using the maximum length sequence-modulated continuous wave. The present method improves the accuracy of ultrasound speed measurement further by resisting echoes. The time delay between the received signal and the transmitted signal is estimated accurately by combining the cross-correlation, parabolic interpolation and phase shift technique. Moreover, both the inherent delays induced by physical system and the path length of ultrasound are expediently corrected through least square estimation. As a result, accurate time of flight and ultrasound speed measurement are achievable. For example, the standard deviation of ultrasound speed measurement in distilled water is less than 0.003 m/s, and the deviation between the ultrasound speed measurement and the reference is less than 0.04 m/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.