Abstract

Few-layer black phosphorus (BP) has attracted significant interest in recent years due to electrical and photonic properties that are far superior to those of other two-dimensional layered semiconductors. The study of long term electrical stability and reliability of black phosphorus field effect transistors (BP-FETs) with technologically relevant thin, and device-selective, gate dielectrics, stressed under realistic (closer to operation) bias and measured using state-of-the-art ultrafast reliability characterization techniques, is essential for their qualification and use in different applications. In this work, air-stable BP-FETs with a thin top-gated dielectric (15 nm Al2O3, SiO2 equivalent thickness of 5 nm) were fabricated and comprehensively characterized for threshold voltage ( Vth) instability under negative gate bias stress at various measurement delays ( tm), stress biases ( VGSTR), temperatures ( T), and stress times ( tstr) for the first time. Thin top-gated oxide enables low VGSTR that is closer to the operating condition and ultrafast Vth measurements with low delay ( tm = 10 μs, due to high drain current) that ensure minimal recovery. The resultant time kinetics of Vth degradation (Δ Vth) shows fast saturation at longer stress times and low-temperature activation energy. Vth instability in these top-gated devices is suggested to be dominated by hole trapping, which is modeled using first-order equations at different VGSTR and T. It is shown that measurements using larger tm show lower degradation magnitude that do not saturate due to recovery artifacts and give inaccurate estimation of hole trap densities. Conventional, thick, and global back-gated oxide BP-FETs were also fabricated and characterized for varying tm (1 ms being the lowest due to a low drain current level for thick oxide), VGSTR, and T to benchmark our top-gated results. Nonsaturating Δ Vth in the back-gated devices is shown to result from recovery artifacts due to the large tm (1 ms and greater) values. Finally, using a VGSTR and T-dependent first-order model, we show that the top-gated Al2O3 BP-FETs with scaled gate oxide thickness can match state-of-the-art Si reliability specifications at operating voltage and room/elevated temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.