Abstract

Accurate measurements of the thermal conductivity (κ) of porous thin films are still limited due to challenges to deposit flat and continuous metal transducers on porous samples, a necessity for many thermal measurement techniques for nanostructures. In this paper, we introduce an approach based on time-domain thermoreflectance (TDTR) to accurately and conveniently measure κ of porous thin films by transferring a flat and smooth metal film unto porous samples as the transducer for TDTR measurements. We demonstrate our approach by measuring κ of a series of microscale holey SiO2 films with diameters of 1-3.5 μm and porosity of 13-50%. To achieve a measurement uncertainty of <12%, we ensure that the metal transducer films are sufficiently stiff and establish good thermal contact with the holey SiO2 samples. Our κ measurements agree well with calculations of κ from effective medium theory. Our approach could provide a convenient way to further investigate the thermal transport properties of porous films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.