Abstract

The complexes HgBrO and HgClO have been previously determined by ab initio methods to be strongly bound and were suggested to be important intermediates during mercury depletions events observed in the polar troposphere. In the present work accurate near-equilibrium potential energy surfaces (PESs) of these species are reported. The PESs are determined using accurate coupled cluster methods and a series of correlation consistent basis sets with subsequent extrapolation to the complete basis set limit. Additive corrections for both core-valence correlation energy and relativistic effects are also included. The anharmonic ro-vibrational spectra of HgBrO and HgClO have been calculated in variational calculations. Strong infrared band strengths are predicted for all fundamentals in these species. The spin-orbit splitting dominates over the vibronic coupling effect in both HgClO and HgBrO. The Renner-Teller vibronic energy levels corresponding to the bending mode of these molecules are calculated via perturbation theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.