Abstract

Symbolic software verification engines such as Slam and ESC/Java often use automatic theorem provers to implement forms of symbolic simulation. The theorem provers that are used, such as Simplify, usually combine decision procedures for the theories of uninterpreted functions, linear arithmetic, and sometimes bit vectors using techniques proposed by Nelson-Oppen or Shostak. Programming language constructs such as pointers, structures and unions are not directly supported by the provers, and are often encoded imprecisely using axioms and uninterpreted functions. In this paper we describe a more direct and accurate approach towards providing symbolic infrastructure for program verification engines. We propose the use of a theorem prover called Cogent, which provides better accuracy for ANSI-C expressions with the possibility of nested logic quantifiers. The prover’s implementation is based on a machinelevel interpretation of expressions into propositional logic. Cogent’s translation allows the program verification tools to better reason about finite machine-level variables, bit operations, structures, unions, references, pointers and pointer arithmetic. This paper also provides experimental evidence that the proposed approach is practical when applied to industrial program verification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.