Abstract

As a primary candidate in tokamak plasmas, the spectroscopic parameters of tungsten ions have been studied extensively over the past decade. In this paper, we perform calculations of excitation energies, lifetimes, wavelengths and transition rates for all levels of the , , and configurations of by using the multiconfiguration Dirac–Hartree–Fock (MCDHF) method, and also the relativistic many-body perturbation theory (RMBPT) method. Detailed convergence studies on excitation energy from electron-correlation effects and relativistic effects are presented. It is necessary to include the core–valence correlation from deep lying subshells, e.g. and , to produce reliable atomic parameters. Results are compared with available theoretical and experimental work, and the accuracy of the results is confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.