Abstract
Quantitative sphingolipid analysis is crucial for understanding the roles of these bioactive molecules in various physiological and pathological contexts. Molecular sphingolipid species are typically quantified using sphingoid base-derived fragments relative to a class-specific internal standard. However, the commonly employed "one standard per class" strategy fails to account for fragmentation differences presented by the structural diversity of sphingolipids. To address this limitation, we developed a novel approach for quantitative sphingolipid analysis. This approach utilizes fragmentation models to correct for structural differences and thus overcomes the limitations associated with using a limited number of standards for quantification. Importantly, our method is independent of the internal standard, instrumental setup, and collision energy. Furthermore, we integrated this method into a user-friendly KNIME workflow. The validation results illustrate the effectiveness of our approach in accurately quantifying ceramide subclasses from various biological matrices. This breakthrough opens up new avenues for exploring sphingolipid metabolism and gaining insights into its implications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.