Abstract

AbstractInternally contracted multireference configuration interaction (icMRCI) calculations of the ground state (X3Σ−), the first excited state (a1Δ) as well as the second excited state (b1Σ+) have been performed for a series of halogenated nitrenes NXs (X = Cl, Br, and I). Accurate spectroscopic constants of these lowest three electronic states of each NX were obtained in this work using MRCI methods with aug‐cc‐pVXZ (X = T, Q, 5) basis sets and complete basis set (CBS) limit. In addition, various corrections, including the Davidson correction, scalar relativistic effect, core‐valence correlation, and spin‐orbit coupling effect, have been studied in calculating spectroscopic constants, especially for heavy‐atom nitrenes. Comparisons have been made with previous computational and experimental results where available. The icMRCI + Q calculations presented in this work provide a comprehensive series of results at a consistent high level of theory for all of the halogenated nitrenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call