Abstract
The complete active space self-consistent field/internally contracted multireference configuration interaction calculations with the correlation-consistent basis sets have been made to characterize all of the states of BeAr+ cation, which are attributed to the first two dissociation channels. The effect on the potential energy curves by Davidson correction, core-valence correlation, and scalar relativistic corrections is included. The spin-orbit coupling effect is taken into account by the state interaction method with the Breit–Pauli Hamiltonian. Our calculations can provide some useful guidelines for the future experimental work of band system 22[Formula: see text]+1/2-X2[Formula: see text]+1/2. For the first time, the transition properties including Franck−Condon factors and transition dipole moments have been derived for all of the Ω states. Some transition probabilities and radiative lifetimes have been estimated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.