Abstract
The accurate description of biradical systems, and in particular the resolution of their singlet-triplet gaps, has long posed a major challenge to the development of electronic structure theories. Biradicaloid singlet ground states are often marked by strong correlation and, hence, may not be accurately treated by mainstream, single-reference methods such as density functional theory or coupled cluster theory. The anti-Hermitian contracted Schrödinger equation (ACSE), whose fundamental quantity is the two-electron reduced density matrix rather than the N-electron wave function, has previously been shown to account for both dynamic and strong correlations when seeded with a strongly correlated guess from a complete active space (CAS) calculation. Here, we develop a spin-averaged implementation of the ACSE, allowing it to treat higher multiplicity states from the CAS input without additional state preparation. We apply the spin-averaged ACSE to calculate the singlet-triplet gaps in a set of small main group biradicaloids, as well as the organic four-electron biradicals trimethylenemethane and cyclobutadiene, and naphthalene, benchmarking the results against other state-of-the-art methods reported in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.