Abstract

Fiber metal laminates (FMLs) are a kind of composite material prepared by alternately arranging fiber layers and metal sheets at a certain temperature and pressure. It has been widely used in aerospace and automobile transportation for its excellent combined mechanical properties. For the forming and failure processes of FMLs, the interfacial behavior and damage evolution of components are hard to be observed experimentally. Therefore, it is of great importance to simulate them accurately. In this article, the development and application of FMLs were first introduced. Then the comparison of constitutive models in FMLs simulation was given, especially the dynamic constitutive model applied to the metal layer. After that, the important aspects of damage evolution, interface behavior, and model optimization in the simulation on the forming and failure process of FMLs were analyzed, and the emphasis is on the nonlinear progressive damage model of different materials, the construction of cohesive zone model and superior meshing methods. Furthermore, the experimental verifications of FMLs simulation were given. It is shown that the deformation behavior and damage characteristics of various kinds of FMLs during forming and failure processing can be accurately predicted by reasonable numerical simulation. Eventually, the future outlooks for numerical simulation of FMLs was proposed. Through this review, scholars and engineers who are interested in FMLs can systematically understand the numerical simulation work of FMLs, which is helpful in improving the quality of research in this field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call