Abstract
Wind speed prediction is a very important part of wind parks management. Currently, hybrid physical-statistical wind speed forecasting models are used to this end, some of them using neural networks as the final step to obtain accurate wind speed predictions. In this paper we propose a method to improve the performance of one of these hybrid systems, by exploiting diversity in the input data of the neural network part of the system. The diversity in the data is produced by the physical models of the system, applied with different parameterizations. Two structures of neural network banks are used to exploit the input data diversity. We will show that our method is able to improve the performance of the system, obtaining accurate wind speed predictions better than the one obtained by the system using single neural networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.