Abstract

The intermixed micellar/intervesicular bile salt (BS) concentration (IMC), composed of BS monomers and simple micelles, is in dynamic equilibrium with mixed micelles and vesicles. Accurate separation of biliary lipid aggregates is believed to depend on accurately measuring the IMC. Using centrifugal ultrafiltration, we measured the IMC of cholesterol-supersaturated model biles that were physiologically composed. Gel chromatography was performed using eluants containing the following: 1) the IMC; 2) the same BS composition as the IMC but higher or lower BS concentrations; 3) the same BS concentration as the IMC, but with more hydrophilic or hydrophobic BS; and 4) 10 mmol/L cholate. Compared with an eluant containing the same BS composition as the IMC, an eluant containing the same relative BS composition but 75% of the IMC increased the proportion of cholesterol in vesicles and decreased the vesicular cholesterol/egg yolk phosphatidylcholine (EYPC) ratio. In contrast, an eluant containing 150% of the IMC entirely transformed vesicles to micelles. Eluants containing slightly more hydrophobic or more hydrophilic BS eliminated or increased vesicular cholesterol content, respectively. An eluant of 10 mmol/L cholate overestimated vesicular cholesterol and in concentrated biles reproducibly produced an incompletely separated intermediate peak, possibly because of re-equilibration between mixed micelles and vesicles. Further, in concentrated biles, fractions eluting at volumes corresponding to mixed micelles were visibly turbid, irrespective of the eluant used. The correct IMC allows accurate separation of biliary lipid aggregates, but differences in BS concentration or composition substantially alter the vesicular percentage of cholesterol as well as the cholesterol/EYPC ratio. Elution with 10 mmol/L cholate may introduce artifactual gel-filtration peaks and inadequate separation of particles with widely differing molecular weights, both of which have confused previous analyses of biliary lipid aggregates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call