Abstract
We introduce deep learning technique to perform robust mode decomposition (MD) for few-mode optical fiber. Our goal is to learn a robust, fast and accurate mapping from near-field beam profiles to the complete mode coefficients, including both of the modal amplitudes and phases. Taking a few-mode fiber which supports 3 linearly polarized modes into consideration, simulated near-field beam profiles with known mode coefficient labels are generated and fed into the convolutional neural network (CNN) to carry out the training procedure. Further, saturated patterns are added into the training samples to increase the robustness. When the network gets convergence, ordinary and saturated beam patterns are both utilized to perform MD with pre-trained CNN. The average correlation value of the input and reconstructed patterns can reach as high as 0.9994 and 0.9959 respectively for two cases. The consuming time of MD for one beam pattern is about 10ms. The results have shown that deep learning techniques highly favors the accurate, robust and fast MD for few-mode fiber.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.