Abstract

The thin film multilayer multichip module-deposited (MCM-D) technology of IMEC is used for characterising the RF electrical performance of two types of chip scale packages (CSPs). The measurement technique called MCM-on-package-on-MCM (MoPoM) enables accurate measurements and de-embedding in the gigahertz (GHz) range of frequencies. Wafer processing of the MCM-D technology allows for several design structures to be integrated on a single mask. The packages chosen are a 120-pin plastic ball grid array (PBGA) and an 80-pin polymer stud grid array (PSGA). Lumped element models extracted from measurements and three-dimensional simulations show good agreement with the measurements up to 6 GHz for the BGA and the PSGA. The electrical performance of the packages is compared at 1.8 GHz (GSM), 2.4 GHz (Bluetooth), and 5.2 GHz (HiperLAN) and at 5.2 GHz both the packages exhibit a return loss of lower than -10 dB and hence cannot be used in most cases without design improvement. We also show that the influence of encapsulant is significant while transmission line detuning due to the package is not significant at microwave frequencies. We also briefly mention about the crosstalk effects. We demonstrate the significant degradation in the performance of a 5.2 GHz MCM-D low noise amplifier (LNA) after packaging. A significant improvement in package performance is observed by conjugate matching the package interconnects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call