Abstract
Energy-consistent two-component semi-local pseudopotentials for the superheavy elements with atomic numbers 111-118 have been adjusted to fully relativistic multi-configuration Dirac-Hartree-Fock calculations based on the Dirac-Coulomb Hamiltonian, including perturbative corrections for the frequency-dependent Breit interaction in the Coulomb gauge and lowest-order quantum electrodynamic effects. The pseudopotential core includes 92 electrons corresponding to the configuration [Xe]4f(14)5d(10)5f(14). The parameters for the elements 111-118 were fitted by two-component multi-configuration Hartree-Fock calculations in the intermediate coupling scheme to the total energies of 267 up to 797 J levels arising from 31 up to 62 nonrelativistic configurations, including also anionic and highly ionized states, with mean absolute errors clearly below 0.02 eV for averages corresponding to nonrelativistic configurations. Primitive basis sets for one- and two-component pseudopotential calculations have been optimized for the ground and excited states and exhibit finite basis set errors with respect to the finite-difference Hartree-Fock limit below 0.01 and 0.02 eV, respectively. General contraction schemes have been applied to obtain valence basis sets of polarized valence double- to quadruple-zeta quality. Results of atomic test calculations in the intermediate coupling scheme at the Fock-space coupled-cluster level are in good agreement with those of corresponding fully relativistic all-electron calculations based on the Dirac-Coulomb-Breit Hamiltonian. The results demonstrate besides the well-known need of a relativistic treatment at the Dirac-Coulomb level also the necessity to include higher-order corrections for the superheavy elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.