Abstract

The registration of unitary-modality geometric data has been successfully explored over past decades. However, existing approaches typically struggle to handle cross-modality data due to the intrinsic difference between different models. To address this problem, in this article, we formulate the cross-modality registration problem as a consistent clustering process. First, we study the structure similarity between different modalities based on an adaptive fuzzy shape clustering, from which a coarse alignment is successfully operated. Then, we optimize the result using fuzzy clustering consistently, in which the source and target models are formulated as clustering memberships and centroids, respectively. This optimization casts new insight into point set registration, and substantially improves the robustness against outliers. Additionally, we investigate the effect of fuzzier in fuzzy clustering on the cross-modality registration problem, from which we theoretically prove that the classical Iterative Closest Point (ICP) algorithm is a special case of our newly defined objective function. Comprehensive experiments and analysis are conducted on both synthetic and real-world cross-modality datasets. Qualitative and quantitative results demonstrate that our method outperforms state-of-the-art approaches with higher accuracy and robustness. Our code is publicly available at https://github.com/zikai1/CrossModReg.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.