Abstract

Density functional theory (DFT) was combined with solution of the Poisson equation for continuum dielectric media to compute accurate redox potentials for several mononuclear transition metal complexes (TMCs) involving iron, manganese, and nickel. Progress was achieved by altering the B3LYP DFT functional (B4(XQ3)LYP-approach) and supplementing it with an empirical correction term G(X) having three additional adjustable parameters, which is applied after the quantum-chemical DFT computations. This method was used to compute 58 redox potentials of 48 different TMCs involving different pairs of redox states solvated in both protic and aprotic solvents. For the 58 redox potentials the root mean square deviation (RMSD) from experimental values is 65 mV. The reliability of the present approach is also supported by the observation that the energetic order of the spin multiplicities of the electronic ground states is fulfilled for all studied TMCs, if the influence from the solvent is considered as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call