Abstract
ABSTRACT Abnormal or violent behaviour by individuals with mental disorders presents significant risks to public safety, necessitating advanced systems capable of detecting such behaviours in real time. Traditional single-sensing methods for human activity recognition often struggle with issues like signal noise, dropped data, and limited scalability, which hinder their ability to accurately detect abnormal behaviours in dynamic and complex environments. This paper introduces a novel solution that addresses these challenges by proposing an adaptive 3D residual attention network (A3D-RAN) combined with Gated Recurrent Units (GRUs). The A3D-RAN utilises an adaptive attention mechanism to focus on the most relevant regions in video sequences, while residual connections improve feature reuse and maintain gradient flow, enabling fine-grained detail capture. GRUs are integrated to efficiently model long-term temporal dependencies, ensuring a more comprehensive understanding of human behaviour across time. Through extensive experimentation on real-world datasets, our model achieved a remarkable accuracy of 97%, significantly surpassing the 78% accuracy of standalone A3D-RAN implementations. Moreover, the robustness of the model under challenging conditions – such as occlusions and lighting variations – demonstrates its potential for real-world surveillance applications. By employing the Improved War Strategy Optimization (IWSO) Algorithm for parameter tuning, we further enhanced performance, reaching an unprecedented accuracy of 99%. This breakthrough underscores the practical value of our approach in improving public safety and security through accurate and timely detection of abnormal behaviours in surveillance systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.