Abstract

BackgroundIn the event of biocrimes or infectious disease outbreaks, high-resolution genetic characterization for identifying the agent and attributing it to a specific source can be crucial for an effective response. Until recently, in-depth genetic characterization required expensive and time-consuming Sanger sequencing of a few strains, followed by genotyping of a small number of marker loci in a panel of isolates at or by gel-based approaches such as pulsed field gel electrophoresis, which by necessity ignores most of the genome. Next-generation, massively parallel sequencing (MPS) technology (specifically the Applied Biosystems sequencing by oligonucleotide ligation and detection (SOLiD™) system) is a powerful investigative tool for rapid, cost-effective and parallel microbial whole-genome characterization.ResultsTo demonstrate the utility of MPS for whole-genome typing of monomorphic pathogens, four Bacillus anthracis and four Yersinia pestis strains were sequenced in parallel. Reads were aligned to complete reference genomes, and genomic variations were identified. Resequencing of the B. anthracis Ames ancestor strain detected no false-positive single-nucleotide polymorphisms (SNPs), and mapping of reads to the Sterne strain correctly identified 98% of the 133 SNPs that are not clustered or associated with repeats. Three geographically distinct B. anthracis strains from the A branch lineage were found to have between 352 and 471 SNPs each, relative to the Ames genome, and one strain harbored a genomic amplification. Sequencing of four Y. pestis strains from the Orientalis lineage identified between 20 and 54 SNPs per strain relative to the CO92 genome, with the single Bolivian isolate having approximately twice as many SNPs as the three more closely related North American strains. Coverage plotting also revealed a common deletion in two strains and an amplification in the Bolivian strain that appear to be due to insertion element-mediated recombination events. Most private SNPs (that is, a, variant found in only one strain in this set) selected for validation by Sanger sequencing were confirmed, although rare false-positive SNPs were associated with variable nucleotide tandem repeats.ConclusionsThe high-throughput, multiplexing capability, and accuracy of this system make it suitable for rapid whole-genome typing of microbial pathogens during a forensic or epidemiological investigation. By interrogating nearly every base of the genome, rare polymorphisms can be reliably discovered, thus facilitating high-resolution strain tracking and strengthening forensic attribution.

Highlights

  • In the event of biocrimes or infectious disease outbreaks, high-resolution genetic characterization for identifying the agent and attributing it to a specific source can be crucial for an effective response

  • Microbial forensics is a discipline with an epidemiological foundation focused on the characterization, analysis and interpretation of evidence derived from a disease outbreak to identify it as a criminal event and distinguish it from a natural disease outbreak

  • Emergence of several anthrax cases and the discovery of letters carrying Bacillus anthracis spores in the offices of several media outlets and the US Senate created an immediate need to obtain forensic evidence that could assist in identifying the source of the B. anthracis and the perpetrator(s) of this act

Read more

Summary

Introduction

In the event of biocrimes or infectious disease outbreaks, high-resolution genetic characterization for identifying the agent and attributing it to a specific source can be crucial for an effective response. Microbial forensic investigations seek to obtain information regarding the identification or source of the evidentiary material with the ultimate goals of identifying those responsible for the crime (that is, attribution), excluding innocent or unlikely sources, and reconstructing the events of a case. In this sense, a search for commonalities and clustering to identify the source of infection is similar to the standard epidemiologic methods used to investigate outbreaks of infectious diseases. No such polymorphisms were initially discovered by this approach

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call