Abstract

Full-dimensional quantum dynamics simulations of the reaction of Cl with methane and its isotopomers are reported. Thermal rate constants are computed for the Cl + CH4 → HCl + CH3, Cl + CHD3 → HCl + CD3, and Cl + CD4 → DCl + CD3 reactions. Temperatures between 200 and 500 K are considered. In this temperature range, excellent agreement with the experiment is obtained. A detailed analysis of the kinetic isotope effect reveals the crucial importance of the CH3/CD3 umbrella motion. Comparison with approximate ring-polymer molecular dynamics simulations shows significant differences depending on the isotope studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call