Abstract

Free energy sampling methods allow studying the full dynamics of activated processes. Unfortunately, the affordable accuracy of the potential describing the energy and forces of the system is usually rather low. Here we introduce a new method that by combining metadynamics and free energy perturbation allows calculating accurate quantum chemical free energies for chemical reactions. To prove the effectiveness of this new approach we study the SN2 reaction of CH3F + Cl- → CH3Cl + F- in vacuo and solvated by water. Comparisons are made with harmonic transition-state theory to show how this method could provide accurate equilibrium and rate constants for complex systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call